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The most general quantum mechanical wave equation for a massive scalar particle in
a metric generated by a spherically symmetric mass distribution is considered within
the framework of higher derivative gravity (HDG). The exact effective Hamiltonian is
constructed and the significance of the various terms is discussed using the linearized
version of the above-mentioned theory. Not only does this analysis shed new light on the
long standing problem of quantum gravity concerning the exact nature of the coupling
between a massive scalar field and the background geometry, it also greatly improves our
understanding of the role of HDG’s coupling parameters in semiclassical calculations.
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1. INTRODUCTION

The nonrenormalizability of general relativity (Deser and Niewenhuizen,
1974; Goroff and Sagnotti, 1985; t’Hooft and Veltman, 1974) has inspired the con-
struction of various alternative models for quantum gravity. Among these models
there is one that definitely holds a prominent place: higher derivative gravity, or
HDG for short. This theory is defined by the Lagrangian density

LHDG =
√−g

[
2

κ2
R+ α

2
R2+ β

2
R2
µv

]
, (1)

whereα andβ are dimensionless coupling parameters andκ2 = 32πG, with G
being Newton’s constant.

Actually, HDG is famed for being currently the only known gravity theory
that is renormalizable along with its coupling constants (Stelle, 1977). Despite
being renormalizable, however, HGD possesses a ghost pole in the tree propagator
which renders it nonunitary within the standard pertubation scheme. We shall not
discuss this problem here, restricting ourselves to draw attention to some pertinent
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references (Antoniadis and Tomboulis, 1986; Fradkin and Tseytlin, 1982; Johston,
1988; Stelle, 1977). Leaving aside the unsolved question of HDG’s unitarity—a
problem, incidentally, that is a bitter pill for quantum field theorists to swallow—
HDG has very attractive properties and can be used, among other things, as an
efficient tool in undertaking calculations in which the gravitational field is con-
sidered as a classical background field, interacting with quantum matter (Accioly
et al., 2000a,b; Accioly and Blas, 2001).

On the other hand, physical phenomena in which gravitational and quantum
effects are interwoven, are no more beyond our reach (Bonse and Wroblewski,
1983; Colella and Overhauser, 1975; Nesvizhevskyet al., 2002), which certainly
requires that we acquaint ourselves with the issue of the gravitational effects on
quantum mechanical systems. In other words, we must learn how to handle rela-
tivistic field equations in a curved background spacetime.

Our aim here is to study the effects of HDG, treated as a background classical
field, on spin-0 particles with nonvanishing mass. This approach casts light on the
important question about the exact nature of the coupling between the massive
scalar field and the background geometry. In addition, it makes our understanding
of the role of HDG’s coupling parameters in semiclassical calculations better.

We discuss the propagation of the spinless massive particle in the geometry
generated by a spherically symmetric mass distribution in Section 2, while the
exact effective Hamiltonian is constructed in Section 3. In Section 4 we analyze
the significance of the various terms of the Hamiltonian using the linearized version
of HDG. We conclude in Section 5 with some discussions and comments.

We use natural units throughout. In our convention the signature is (+−−−).
The curvature tensor is defined byRαβγ δ = −∂δTα

βγ + · · ·, the Ricci tensor by
Rµv = Rαµvα, and the curvature scalar byR= gµv Rµv, wheregµv is the metric
tensor.

2. THE MOST GENERAL COVARIANT KLEIN–GORDON EQUATION
IN THE GEOMETRY GENERATED BY A SPHERICALLY
SYMMETRIC MASS DISTRIBUTION

Currently, we do not have a standard theory of massive spinless bosons in
curved space. That is not the case as far as the Dirac fermions are concerned.
Therefore our first task is to generalize the usual Klein–Gordon equation to the
case of a spacetime with nonvanishing curvature. Consider in this direction a real,
massive scalar field, for which the Lagrangian density is

L = √−g
[
gµv∂µφ∂vφ −m2φ2

]
. (2)

Now, the only possible local scalar coupling betweenφ and the gravitational
field with the correct dimensions isλRφ2, whereλ is a new coupling constant
(Birrell and Davies, 1982). Consequently, we incorporate this term into (2). The
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resulting Lagrangian as well as the corresponding wave equation are given respec-
tively by

L = √−g
[
gµv∂µφ∂vφ − (m2+ λR)φ2

]
, (3)

(h+m2+ λR)φ = 0. (4)

This equation may be regarded within the context we have just outlined as the
most general covariant Klein–Gordon equation in curved space. Note that there
are two popular choices forλ: minimal coupling (λ = 0) and conformal coupling
(“conformal coupling” is from now on a loose term for “massive scalar field
nonminimally coupled to the curved background with a coupling constantλ = 1

6”).
The former leads to the simplest equation of motion, whereas the latter gives rise
to a theory which is conformally invariant in the massless limit. For the time being,
however, we need not to settle this matter, but rather considerλ on the same footing
asm, i.e., as a parameter which specifies the theory.

Since we are interested in the geometry generated by a spherically symmetric
mass distribution, we choose to work in Schwarzschild coordinates in isotropic
form, in which the invariant interval takes the form

ds2 = [V(r )]2 dt2− [W(r )]2[dr2+ r 2(dθ2+ sin2 θ dϕ2)], (5)

whereV2 andW2 are solutions of the equations derived from (1). Incidentally, the
field equations following from (1), supplemented by a matter Lagrangian density,
are

2

κ2
Gµv + α

2

[
−1

2
gµv R2+ 2RRµv + 2∇µ∇v R− 2gµvhR

]
+ β

2

[
−1

2
gµv R2

ρσ

+∇µ∇v R+ 2Rµρλv Rρλ − 1

2
gµvhR− hRµv

]
+ 1

2
Tµv = 0. (6)

A long but rather straightforward calculation using our coordinates gives the
following expression for the Ricci scalar

R= 2
(∇W)2

W4
− 4
∇2W

W3
− 2
∇2V

V W3
− 2
∇V · ∇W

V W3
. (7)

Inserting (5) into (4) we find

φ̈ − F2∇2φ − F2∇ ln(V W) · ∇φ +m2V2φ + λRV2φ = 0, (8)

whereF2 ≡ V2

W2 , R is given by Eq. (7) and the dots denote differentiation with
respect to time. The above is the most general covariant Klein–Gordon equation
in a general static classical background within the framework of HDG.
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3. KLEIN–GORDON EQUATION IN SCHR ÖDINGER FORM

To understand the physics of Eq. (8) is advantageous to rewrite it in
Schrödinger formalism. In other words, we have to transform the Klein–Gordon
equation into a system of two coupled differential equations that are of the first-
order in time. This is achieved by the ansatz

φ = a+ b,
i φ̇

m
= a− b.

The two coupled differential equations

i ȧ =
(m

2
−3

)
a−

(
3+ m

2

)
b, (9)

i ḃ =
(m

2
+3

)
a+

(
3− m

2

)
b, (10)

where

3 ≡ 1

2m
[F2∇2+ F2∇ ln(V W) · ∇ −m2V2− λRV2],

are equivalent to Eq. (8). Indeed, the addition of Eqs. (9) and (10) leads to the
trivial equationφ̇ = φ̇, while its subtraction reproduces (8).

Introducing the column vector

8 =
(a

b

)
(11)

and making use of the 2× 2 matrices

τ =
(

1 1

−1 −1

)
, τT =

(
1 −1

1 −1

)
,

that fulfill the algebraic relations

τ 2 = O, {τ, τT} = 4I ,

where

O =
(

0 0

0 0

)
, I =

(
1 0

0 1

)
,

we obtain a Schr¨odinger-type equation, namely,

i 8̇ = H8,

with the Hamiltonian given by

H = m

2
τT − τ3.
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Of course,H is not a Hermitian operator; its square,

H2 = −m

2
{τ, τT}3 = −2m3I ,

nevertheless, is diagonal. Therefore, formally,

H =
√
H2 = (−2m3)1/2I 1/2. (12)

Now, the operator3 is Hermitian when the requisite spatial integrations are
carried out using the correct measure (Fulling, 1991)

〈3〉 =
∫
ρ d3xψ∗3ψ,

whereρ ≡ g00√−g = W3

V .
However, it is more convenient to absorbρ into the wave functionsψ andψ∗

in order that3 appears as a Hermitian operator when integrated with respect to
the Euclidian coordinates

∫
d3x. This can be achieved by introducing a new wave

functionψ ′,

ψ ′ = ρ1/2ψ = V−1/2W3/2 ≡ fψ,

and a corresponding HamiltonianH′ = fH f −1, in terms of which Eq. (12)
becomes

H′ =
√
H′2 = (−2m3′)1/2I 1/2,

where

3′ = f3 f −1

= − 1

2m
(m2V2+ λRV2)+ F2

2m

{[
−2
∇ f

f
+∇ ln(V W)

]
· ∇

−∇
2 f

f
+ 2

(∇ f

f

)2

+∇2−∇ ln(V W) · ∇ f

f

}
. (13)

If we take into account that

∇ f

f
= ∇F

F
+ 1

2
∇ ln(V W),

we promptly obtain the useful results(∇ f

f

)2

=
(∇F

F

)2

− 1

F
∇F · ∇ ln(V W)+ 1

4
[∇ ln(V W)]2,

∇2 f

f
= 2

(∇F

F

)2

+ 1

4
[∇ ln(V W)]2+ 1

2
∇2 ln(V W)− ∇F

F
· ∇ ln(V W)− ∇

2F

F
.
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Inserting the above into Eq. (13), we get

3′ = −m

2
V2− λRV2

2m
+ F2

2m

{
2
∇F

F
· ∇ + ∇2+ ∇

2F

F

−1

4
[∇ ln(V W)]2− 1

2
∇2 ln(V W)

}
. (14)

Using the identity

F2∇2 ≡ −F p̂2F − F∇2F − 2F∇F · ∇,

wherep̂ = ∇i is the momentum operator, we may rewrite Eq. (14) as

3′ = −mV2

2
− 1

2m
F p̂2F + 1

8m
∇F · ∇F − 1

2m
Dλ(V, W),

with

Dλ(V, W) ≡ λ
[(

1

2λ
− 2

)
V

W2
∇2V − 2

V

W3
∇V · ∇W

+
(

1

2λ
− 4

)
V2

W3
∇2W + 2

V2

W4
(∇W)2

]
. (15)

Consequently,

H′ =
[
m2V2+ F p̂2F − 1

4
∇F · ∇F +Dλ(V, W)

]1/2

I 1/2. (16)

The matrixI 1/2 appearing in the Hamiltonian above must be dealt with some
care. Indeed, the square root of the 2× 2 identity matrix is not unique. On the other
hand, the eigenvalues of any matrix whose square isI are±1. For our purposes,
however, it is convenient to chooseI 1/2 as a 2× 2 matrix with distinct eigenvalues.
In this case it may be diagonalized by a similarity transformation. In other words,
there exists a 2× 2 invertible matrixP such that

η = P−1I 1/2P,

where

η =
(

1 0

0 −1

)
.

As a consequence,P is also a diagonalizing matrix forH′, i.e.,H = P−1H′P
is diagonal. Therefore,H assumes the form

H =
(
HFW 0

0 −HFW

)
,



P1: GAD

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484383 April 28, 2004 4:19 Style file version May 30th, 2002

Merging Higher Derivative Gravity and Quantum Mechanics 53

where

HFW =
[
m2V2+ F p̂2F − 1

4
∇F · ∇F +Dλ(V, W)

]1/2

. (17)

Accordingly, we have succeeded in transforming the Hamiltonian for a Klein–
Gordon particle into a form where positive and negative energy states are decou-
pled. The transformationH→ H is thus the Foldy–Wouthuysen transformation
for the most general Klein–Gordon equation in curved space within the context of
HDG. Of course, the effective Hamiltonian,HFW, defined by Eq. (17) is nothing
but the Foldy–Wouthuysen Hamiltonian. It is quite remarkable that the Foldy–
Wouthuysen transformation we have constructed isexact. It is worth mentioning
that it exists foranyλ as well.

4. ANALYZING THE NONRELATIVISTIC LIMIT OF THE THEORY

As we have seen in the last Section,HFW is exact. Nonetheless, we are gen-
erally interested in situations where it is sufficient to use nonrelativistic wave
functions, treating the gravitational interaction as an ordinary pertubation in non-
relativistic quantum mechanics. The effective quasirelativistic Hamiltonian is then
trivially obtained by assuming that them term in Eq. (17) is the dominating term
and correspondingly expanding the square root of (17) as

HFW ≈ mV+ 1

4m
(W−1p̂2F + F p̂2W−1)− 1

8mV
∇F · ∇F + Dλ(V, W)

2mV
.

(18)
Before going on, it is necessary to find the classical background field. Far away from
the central gravitating body of a massM and in the Teyssandier gauge (Teyssandier,
1989), the metric is given by (see, for instance, Acciolyet al., 2000a)

g00 = 1− 28N

(
1+ 1

3
e−m0r − 4

3
e−m1r

)
, (19)

gii = −1− 28N

(
1− 1

3
e−m0r − 2

3
e−m1r

)
, (20)

where 8N ≡ MG
r is the Newtonian potential,i = 1, 2, 3,m2

0 ≡ 2
κ2(3α+β) and

m2
1 ≡ − 4

κ2β
. Note that we are assuming thatm2

1 > 0 (β < 0) and m2
0 > 0

(3α + β > 0), which corresponds to the absence of tachyons (both positive and
negative energy) in the dynamical field. From Eqs. (19) and (20) we get
immediately

V ≈ 1− A8N, W ≈ 1+ B8N, F ≈ 1− C8N, (21)
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where

A ≡ 1+ 1

3
e−m0r − 4

3
e−m1r ,

B ≡ 1− 1

3
e−m0r − 2

3
e−m1r ,

C ≡ A+ B = 2 (1− e−m1r ).

Asymptotically,A, B→ 1 andC→ 2. In this case, (19) and (20) reduces to the
linearized Schwarzschild solution in isotropic form concerning general relativ-
ity. We are now ready to analyze the quasirelativistic Hamiltonian Eq. (18). For
simplicity’s sake we consider first its asymptotical limit. In this case,

V → 1−8N, W→ 1+8N, F → 1− 28N. (22)

From Eqs. (18) and (22), we come to the conclusion that

HFW→ m+mg · r + 3

2m
p̂ · (g · r )p̂+ p̂2

2m
+ 1

m

(
3

4
− λ

)
∇28N, (23)

whereg ≡ −MG
r 3 r . Note that we have neglected the higher order relativistic and

gravitational terms.
For the Sun, for instance,8N ∼ 10−6, which implies that the term3

2m p̂.
(g · r )p̂ is less than the kinetic term by a factor of∼10−6 and much weaker by
several orders than the leading and next to leading terms. As a consequence, we
shall not take the contribution of this term into account. Thus,

HFW→ m+ p̂2

2m
+mg · r + 1

m

(
3

4
− λ

)
∇28N, (24)

The first two terms in Eq. (24) give the usual expression for the relativistic
energy of the massive spin-0 particle correct to orderv2, wherev is the particle’s
velocity, while the third one gives the Newtonian contribution. Interesting enough
the quantum mechanical acceleration, namely,

a= −[H, [H, r ]],

yields the usual Newtonian result

a= ∇8N,

if we employ the simple form

H = m+ p̂2

2m
+mg · r .

The last term, which following Obukhov (Obukhov, 2001) we shall call the
gravitational Darwin term(GDT), may be attributed to the zitterbewegung. Be-
cause the boson’s position fluctuates an amountδr such that〈δr 2〉 ≈ 1

m2 , it sees a
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somewhat smeared out Newtonian potential; the correction in the effective gravi-
tostatic energy is

〈mδ8N〉 = 〈m8N(r + δr )〉 − 〈m8N(r )〉 ≈ 1

6m
∇28N. (25)

The GDT we have found, namely,1
m( 3

4 − λ)∇28N, is in qualitative accord with
Eq. (25) as far as the sign, form, and magnitude are concerned, if 0≤ λ < 3

4,
where we have assumed as usual that the coupling constant should be nonnegative.
Therefore, the exact effective Hamiltonian exists for anyλ; however, for 0≤ λ <
3
4, the GDT is in good agreement with (25).

But, far away from the source and in the approximation considered the con-
tribution of the GDT is zero. Thus,

HFW→ m+ p̂2

2m
+mg · r . (26)

whereg≡ −GM
r 3 r .

We discuss now whether or not the nonminimal coupling violates the equiv-
alence principle. This can be easily done by comparing the true gravitational
coupling with the purely inertial case. For the flat Minkowski space in accelerated
frame,

V = 1+ a · r , W = 1, F = W,

and we get

HFW ≈ m+ p̂2

2m
+ma · r , (27)

where we have neglected the higher order relativistic and inertial terms. It follows
from Eqs. (26) and (27) that the nonminimal coupling, unlike it is commonly
believed, does not violate the equivalence principle.

To conclude we analyze Eq. (18) using Eq. (21). The effective Hamiltonian
is now given by

HFW ≈ m−m A8N − 1

2m
p̂ · (B+ C)8Np̂

+ p̂2

2m
+∇2

[
A+ C

4m
− λ(2B− A)

m

]
8N. (28)

On the other hand, it was shown recently that semiclassical HDG leads to dis-
persive photon propagation (Accioly and Blas, 2001). In other words, gravita-
tional rainbows and semiclassical HDG can coexist without conflict. On the ba-
sis of the fact that the rainbow effect is currently undetectable, it is possible to
show that|β| ≤ 1060 (Accioly and Blas, 2001). Consequently, we assume that
|α| ≈ |β| ∼ 1060. Therefore,m̄≡ m1 ≈ m0 ∼ 103 cm−1, which tells us that for
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the Sun, for instance,̄m R̄ ∼ 1013. So, we come to the conclusion that the cor-
rections due to HDG quadratic terms, i.e.,R2 and R2

µv, are essentially smaller
than what the nowadays experimental technique can detect; as a result, Eq. (28)
reduces, in practice, to Eq. (26).

5. DISCUSSIONS AND COMMENTS

There are some arguments in the literature that seem to favor the conformal
coupling (λ = 1

6) to the detriment of other couplings. A number of claims of these
works were recently rehearsed (Accioly and Blas, 2002) and carefully tackled
(Accioly and Blas, 2003). In short, we may say that the aforementioned assertions
are in general inconclusive. Our calculations, however, show that 0≤ λ < 3

4, which
includes, of course, the conformal coupling in the list of the possible couplings.
Note that for this particular coupling, Eq. (15) leads to

D1/6(V, W) = 1

6
F∇2F,

since

F∇2F ≡ V

W2
∇2V − 2

V

W3
∇V · ∇W − V2

W3
∇2W + 2

V2

W4
(∇W)2,

implying that the GDT is given by

F∇2F

12mV
− 1

4m
(W−1∇2F + F∇2W−1).

Undoubtedly, in this case the GDT has the simplest structure, while for other
values ofλ its structure is more complicated. If we appeal to simplicity as a
guide, as is usually done in Physics, we certainly should single out the conformal
coupling. Nonetheless, this criterion is neither orthodox nor robust. In truth, it
seems more of an experimental problem to identify which would be the correctλ

coupling(s) for the various scalar particles. Furthermore, the presence of the GDT
endowed with the simplest structure is certainly a too mild argument in support of
the conformal coupling. Anyway, our computations, at least in principle, bound
the coupling constant without the detriment of the traditional choices:λ = 0 and
λ = 1

6. Its astonishing, nevertheless, that the exact effective Hamiltonian exists for
anyλ; moreover, there is no conflict between the nonminimal coupling and the
equivalence principle.

As far as the influence of the quadratic terms of HDG on the effective
Hamiltonian is concerned, all we can say is that this effect cannot be observed
because it is beyond the present experimental reach. Certainly, Einstein’s gravity
is currently the appropriate theory to deal with these effects.

Last but not least, we call attention to the fact that that even today there are
some physicists who believe that the Foldy–Wouthuysen transformation only exists
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for Dirac particles. Of course, this idea must be dismissed as a complete nonsense.
For a discussion concerning the Foldy–Wouthuysen transformation related to the
Klein–Gordon equation in flat space see, for instance, the works of Case (1954)
and Feshbach and Villars (1958), as well as the well-known textbook by Bjorken
and Drell (1964). Incidentally, if the gravitational field is “switched off” (V2 =
W2 = 1), Eq. (17) reduces to

√
m2+ p̂2, which is precisely theexactFoldy–

Wouthuysen Hamiltonian for the Klein–Gordon equation in flat space found by
Bjorken and Drell (1964) using a rather different approach.
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